If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x-24=0
a = 2; b = -20; c = -24;
Δ = b2-4ac
Δ = -202-4·2·(-24)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{37}}{2*2}=\frac{20-4\sqrt{37}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{37}}{2*2}=\frac{20+4\sqrt{37}}{4} $
| (39x+4)=(49+2)=180 | | (12a^2+13a+7)+(9a^2+15a+8)=0 | | 14y=15+9y | | 3b+2=2b | | -3(4x+2)=4 | | (6x^2+36x+13)-(4x^2+13x+33)=0 | | 5/6x+2=-7+1/2x | | (5y^2+7y-3)+(-2y^2-5y+6)=0 | | 5x-4=7x(3-5x) | | 3(5y+1)=8y | | 11x+6+3x+31=180 | | 3(4x-11)=10 | | (4s^2-2s-3)-(5s^2+7s-6)=0 | | 6x+10+x+23=90 | | 8x+100+2x+50=90 | | (3t^2-2t+4)+(2t^2+5t-3)=0 | | 9(3-Y)+8(-3+y)=0 | | 7.08(-4c+8)=8 | | 3.5=10m=6.95 | | (2r^2+6r+7)-(3r^2+5r+8)=0 | | 81x+42=180 | | 3y+91=0 | | 81x+42x=180 | | (z-14)+(z-31)=z+16 | | x=5/4-(x+2) | | (z-14)+(z-31)=z+15 | | x=5/4(x+2) | | z+50=(z+14)+(z+1) | | 3x/4=63/12 | | p+33=p+(p-42) | | p+33=p+(p-42 | | 8(-8k+3)=536 |